Econ 301.01 Econometrics Bilkent University Department of Economics Berument

Lab Exercise 2

Consider a production function where output (Y) depends on two inputs, capital (K) and labor (L). The optimal levels of K and L for a *given output* are given by the point where the "cost line" is tangential to the isoquant. The optimal levels of K and L for *different outputs* are given by the expansion path that is the locus of points where the cost lines are tangential to the isoquants. This scenario is depicted in Figure

In Figure a, the production function is such that the expansion path is a straight line; the optimal input *ratio* L/K depends on the relative input prices, but it does not depend on Y (it does not change as we move outward on the expansion path). In Figure b the production function is such that the expansion path is curved; the input ratio L/K depends on both the relative input prices and on output. The drawing in Figure b suggests L/K will decline as Y increases.

$$\frac{L_t}{K_t} = \beta_1 \left(\frac{W_t}{R_t}\right)^{\beta_2} Y_t^{\beta_3} e^{u_t}$$

Given this background, we wish to find how the labor/capital ratio depends on the relative price of labor and capital and on output for the U.S. Air Transport Industry. Observations on indices of these variables for the period 1948-79 appear in the Table. We set up the model

$$ln\left(\frac{L_t}{K_t}\right) = \beta_1 + \beta_2 ln\left(\frac{W_t}{R_t}\right) + \beta_2 \ln(Y_t) + u_t$$

where

 L_t is an index of labor input in year t, K_t is an index of capital services in year t, W_t is an index of the price of labor in year t,

 R_t is an index of the price of capital in year t, and

 Y_t is an index of output in year t.

- 1. What signs do you expect on the coefficients β_2 and β_3 ? How does the sign on β_3 relate to the shape of the expansion path for the air transportation production function?
- 2. Find least squares estimates of β_1 , β_2 and β_3 . Interpret the estimates. Do these estimates have the expected signs?
- 3. Compute standard errors for the estimates of β_1 , β_2 and β_3 .
- 4. Is β_3 is different from 0 at the 5% level? Based on this, do you think the expansion path could be a straight line?
- 5. What proportion of variation in In (L_t/K_t) is explained by movements in In (W_t/K_t) and In (Y_t) ?
- 6. Test the hypothesis that $\beta_2=0$ versus and $\beta_2\neq 0$.
- 7. Test the hypothesis that $\beta_3=2$ versus and $\beta_3\neq 2$.
- 8. Test the hypothesis that $\beta_2+\beta_3=0$ versus not
- 9. Test the joint hypothesEs that $\beta_2=0$ and $\beta_3=0$. You may compare their SSRs. How????
- 10. Test the joint hypothesEs that $\beta_2 = \beta_3 = 1$.
- 11. Test the joint hypothesis that $\beta_2=2\beta_3$.
- 12. Test the joint hypothesis that $\beta_2=2\beta_3=1$.

Year	Y	R	К	W	L
1948	1.214	0.1454	0.612	0.243	1.415
1949	1.354	0.2181	0.559	0.26	1.384
1950	1.569	0.3157	0.573	0.278	1.388
1951	1.948	0.394	0.564	0.297	1.55
1952	2.265	0.3559	0.574	0.31	1.802
1953	2.731	0.3593	0.711	0.322	1.926
1954	3.025	0.4025	0.776	0.335	1.964
1955	3.562	0.3961	0.827	0.35	2.116
1956	3.979	0.3822	0.8	0.361	2.435
1957	4.42	0.3045	0.921	0.379	2.707
1958	4.563	0.3284	1.067	0.391	2.706
1959	5.385	0.3856	1.083	0.426	2.846
1960	5.554	0.3193	1.481	0.441	3.089
1961	5.465	0.3079	1.736	0.46	3.122
1962	5.825	0.3783	1.926	0.485	3.184
1963	6.876	0.418	2.041	0.506	3.263
1964	7.823	0.5163	1.997	0.538	3.412
1965	9.12	0.5879	2.257	0.564	3.623
1966	10.512	0.5369	2.742	0.586	4.074
1967	13.02	0.4443	3.564	0.622	4.71
1968	15.261	0.3052	4.767	0.666	5.217
1969	16.313	0.2332	6.511	0.731	5.569
1970	16.002	0.1883	7.627	0.831	5.495
1971	15.876	0.2023	8.673	0.906	5.334
1972	16.662	0.2506	8.331	1	5.345
1973	17.014	0.2668	8.557	1.056	5.662
1974	19.305	0.2664	9.508	1.131	5.729
1975	18.721	0.2301	9.062	1.247	5.722
1976	19.25	0.3452	8.262	1.375	5.762
1977	20.647	0.4508	7.474	1.544	5.877
1978	22.726	0.5877	7.104	1.703	6.108
1979	23.619	0.5346	6.874	1.779	6.852